How to Begin Implement Network Number of Clusters in NS3

To start implementing and examining the Network Number of Clusters using ns3 we will need to utilize clustering mechanisms to gather nodes within a network for tasks such as load balancing, energy efficiency, or optimized interaction. We can follow these structured approaches to execute the Network Number of Clusters using NS3:

Steps to Begin Implement Network Number of Clusters in NS3

  1. Understand Clustering

Clustering splits the network into collections of nodes are known as clusters. Every single cluster normally contains:

  • Cluster Head (CH): A central node handling the interaction for the cluster.
  • Cluster Members (CM): Nodes, which interact with cluster head (CH).

For clustering, we can consider:

  • Cluster Size: Volume of nodes within each cluster.
  • Cluster Formation Algorithm: Computes how clusters are made like LEACH, K-Means.
  • Cluster Metrics: Estimate the effectiveness such as intra-cluster delay, energy consumption.
  1. Set Up Your Environment

We should install ns3 environment with appropriate modules such as Point-to-Point, Wi-Fi, or LTE based on the network type.

  1. Create the Network Topology

Example: Randomly Distributed Nodes

NodeContainer nodes;

nodes.Create(50); // Create 50 nodes

MobilityHelper mobility;

mobility.SetPositionAllocator(“ns3::RandomRectanglePositionAllocator”,

“X”, StringValue(“ns3::UniformRandomVariable[Min=0.0|Max=100.0]”),

“Y”, StringValue(“ns3::UniformRandomVariable[Min=0.0|Max=100.0]”));

mobility.SetMobilityModel(“ns3::ConstantPositionMobilityModel”);

mobility.Install(nodes);

  1. Cluster Formation

Option 1: Static Clustering

Allocate the nodes manually into clusters:

std::map<uint32_t, uint32_t> nodeToCluster; // Map node ID to cluster ID

for (uint32_t i = 0; i < nodes.GetN(); ++i) {

uint32_t clusterId = i % 5; // Example: 5 clusters

nodeToCluster[i] = clusterId;

std::cout << “Node ” << i << ” belongs to Cluster ” << clusterId << “\n”;

}

Option 2: Dynamic Clustering

Execute a clustering mechanism like LEACH or K-Means:

void FormClusters(std::vector<Ptr<Node>>& nodes) {

// Placeholder for your clustering algorithm

// Assign nodes to clusters based on proximity, energy, etc.

}

FormClusters(nodes);

  1. Assign Roles

Dynamically allocate cluster heads and members:

std::set<uint32_t> clusterHeads;

std::map<uint32_t, uint32_t> clusterMembers; // Map node ID to its cluster head

for (uint32_t i = 0; i < 5; ++i) { // Example: Select one head per cluster

clusterHeads.insert(i); // First 5 nodes as heads

}

for (uint32_t i = 5; i < nodes.GetN(); ++i) {

uint32_t headId = /* Assign nearest or energy-efficient head */;

clusterMembers[i] = headId;

}

  1. Enable Communication

Intra-Cluster Communication

Nodes transmit the information to its cluster head:

ApplicationContainer apps;

UdpEchoServerHelper echoServer(9);

for (uint32_t head : clusterHeads) {

apps.Add(echoServer.Install(nodes.Get(head)));

}

UdpEchoClientHelper echoClient(Ipv4Address(“10.1.1.1”), 9);

echoClient.SetAttribute(“MaxPackets”, UintegerValue(10));

echoClient.SetAttribute(“Interval”, TimeValue(Seconds(1.0)));

echoClient.SetAttribute(“PacketSize”, UintegerValue(1024));

for (const auto& member : clusterMembers) {

apps.Add(echoClient.Install(nodes.Get(member.first)));

}

apps.Start(Seconds(1.0));

apps.Stop(Seconds(10.0));

Inter-Cluster Communication

Cluster heads interact with a central node or other clustering heads in inter-cluster communication:

NodeContainer centralNode;

centralNode.Create(1);

PointToPointHelper pointToPoint;

pointToPoint.SetDeviceAttribute(“DataRate”, StringValue(“10Mbps”));

pointToPoint.SetChannelAttribute(“Delay”, StringValue(“2ms”));

NetDeviceContainer devices;

for (uint32_t head : clusterHeads) {

devices.Add(pointToPoint.Install(centralNode.Get(0), nodes.Get(head)));

}

  1. Monitor Clustering Metrics

Number of Clusters

Measure the volume of unique clusters:

std::set<uint32_t> uniqueClusters;

for (const auto& pair : nodeToCluster) {

uniqueClusters.insert(pair.second);

}

std::cout << “Number of clusters: ” << uniqueClusters.size() << “\n”;

Cluster Load

Assess the volume of members for each cluster:

std::map<uint32_t, uint32_t> clusterLoad;

for (const auto& member : clusterMembers) {

clusterLoad[member.second]++;

}

for (const auto& load : clusterLoad) {

std::cout << “Cluster Head ” << load.first << ” has ” << load.second << ” members\n”;

}

  1. Enable Tracing

ASCII and PCAP Tracing

Record all cluster communication to allow ASCII and PCAP:

AsciiTraceHelper ascii;

pointToPoint.EnableAsciiAll(ascii.CreateFileStream(“clusters.tr”));

pointToPoint.EnablePcapAll(“clusters”);

XML Animation

Make use of NetAnim to envision the clusters:

AnimationInterface anim(“clusters.xml”);

  1. Experiment with Parameters
  • Cluster Size: Modify the volume of clusters and its sizes.
  • Clustering Algorithm: Equate the clustering mechanisms such as LEACH, K-Means, or DBSCAN.
  • Node Mobility: Launch mobility for analysing the dynamic clustering.
  1. Run the Simulation

Then, we execute the simulation and monitor their outcomes:

Simulator::Run();

Simulator::Destroy();

Following these steps, you’ll initiate the implementation and analysis of Network Number of Clusters using NS3 environment and we can expand the subject further for your advanced knowledge.