How to Begin Implement Network Computational Efficiency in ns3
To implement and analyze Network Computational Efficiency in ns-3, follow these steps. Computational efficiency suggest to the balance between the performance of a network system and the computational resources it consumes for sample CPU usage, memory, and power.
Steps to Begin Implement Network Computational Efficiency in ns3
- Understand Computational Efficiency
Computational efficiency is frequently analyzed in based on:
- Time efficiency: How on rapidly challenges are completed.
- Resource efficiency: How used the optimally computational resources (CPU, memory) are.
- Energy efficiency: The energy consumed per computational challenges or network performance.
In networks, computational effectiveness might measure:
- Processing time per packet.
- Resource usage for protocol operations.
- Efficiency of algorithms used for routing, scheduling, or encoding/decoding.
- Set up Your Environment
Enable the tool ns-3 is installed. Assure the tools for profiling and tracking the performance, like as Valgrind or Perf, for examine the CPU and memory consumption.
- Create the Network Topology
Example: Wireless Network
NodeContainer nodes;
nodes.Create(2); // One transmitter and one receiver
MobilityHelper mobility;
mobility.SetPositionAllocator(“ns3::GridPositionAllocator”,
“MinX”, DoubleValue(0.0),
“MinY”, DoubleValue(0.0),
“DeltaX”, DoubleValue(50.0),
“DeltaY”, DoubleValue(50.0),
“GridWidth”, UintegerValue(2),
“LayoutType”, StringValue(“RowFirst”));
mobility.SetMobilityModel(“ns3::ConstantPositionMobilityModel”);
mobility.Install(nodes);
YansWifiChannelHelper channel = YansWifiChannelHelper::Default();
YansWifiPhyHelper phy = YansWifiPhyHelper::Default();
phy.SetChannel(channel.Create());
WifiHelper wifi;
wifi.SetStandard(WIFI_PHY_STANDARD_80211n);
WifiMacHelper mac;
mac.SetType(“ns3::AdhocWifiMac”);
NetDeviceContainer devices = wifi.Install(phy, mac, nodes);
- Set up the Internet Stack
Install the Internet stack for IP-based transmission:
InternetStackHelper stack;
stack.Install(nodes);
Ipv4AddressHelper address;
address.SetBase(“10.1.1.0”, “255.255.255.0”);
Ipv4InterfaceContainer interfaces = address.Assign(devices);
- Generate Traffic
Install applications for replicate the congestion.
Example: UDP Traffic
UdpEchoServerHelper echoServer(9);
ApplicationContainer serverApps = echoServer.Install(nodes.Get(1)); // Receiver
serverApps.Start(Seconds(1.0));
serverApps.Stop(Seconds(10.0));
UdpEchoClientHelper echoClient(interfaces.GetAddress(1), 9);
echoClient.SetAttribute(“MaxPackets”, UintegerValue(1000));
echoClient.SetAttribute(“Interval”, TimeValue(Seconds(0.01))); // 10ms interval
echoClient.SetAttribute(“PacketSize”, UintegerValue(1024)); // 1KB packets
ApplicationContainer clientApps = echoClient.Install(nodes.Get(0)); // Transmitter
clientApps.Start(Seconds(2.0));
clientApps.Stop(Seconds(10.0));
- Profile Computational Efficiency
CPU Usage
Incorporate the hooks for evaluate the CPU usage:
- Use clock() to calculate the CPU time during replicate the consumed:
#include <ctime>
clock_t start, end;
start = clock();
Simulator::Run();
end = clock();
double cpuTime = static_cast<double>(end – start) / CLOCKS_PER_SEC;
std::cout << “CPU Time Used: ” << cpuTime << ” seconds” << std::endl;
- Use external tools for sample Valgrind, gprof for specific profiling.
Memory Usage
Monitor the memory allocation and consumption:
- Use Valgrind –tool=massif or heaptrack for the track memory consumption during replication.
- Record the memory allocation through alter the code for monitor the malloc() and free() calls are necessary.
- Measure Network Performance
Throughput and Latency
Use FlowMonitor to estimate a network performance of parameter metrics:
FlowMonitorHelper flowmon;
Ptr<FlowMonitor> monitor = flowmon.InstallAll();
Simulator::Stop(Seconds(10.0));
Simulator::Run();
monitor->CheckForLostPackets();
Ptr<Ipv4FlowClassifier> classifier = DynamicCast<Ipv4FlowClassifier>(flowmon.GetClassifier());
std::map<FlowId, FlowMonitor::FlowStats> stats = monitor->GetFlowStats();
for (auto& flow : stats) {
double throughput = flow.second.rxBytes * 8.0 / (flow.second.timeLastRxPacket.GetSeconds() – flow.second.timeFirstTxPacket.GetSeconds()); // bps
std::cout << “Throughput: ” << throughput / 1e6 << ” Mbps” << std::endl;
std::cout << “Average Delay: ” << flow.second.delaySum.GetSeconds() / flow.second.rxPackets << ” seconds” << std::endl;
}
Computational Cost per Packet
Follow the processing time for every packet:
double totalProcessingTime = 0.0;
uint32_t totalPacketsProcessed = 0;
void PacketProcessedCallback(Ptr<const Packet> packet) {
clock_t packetStart = clock();
// Simulate packet processing
clock_t packetEnd = clock();
totalProcessingTime += static_cast<double>(packetEnd – packetStart) / CLOCKS_PER_SEC;
totalPacketsProcessed++;
}
devices.Get(1)->TraceConnectWithoutContext(“MacRx”, MakeCallback(&PacketProcessedCallback));
At the last of the replication, measure the computational cost per packet:
double avgProcessingTime = totalProcessingTime / totalPacketsProcessed;
std::cout << “Average Processing Time per Packet: ” << avgProcessingTime << ” seconds” << std::endl;
- Enable Tracing
ASCII and PCAP Tracing
Create a specific logs for further analysis:
AsciiTraceHelper ascii;
phy.EnableAsciiAll(ascii.CreateFileStream(“computational_efficiency.tr”));
phy.EnablePcapAll(“computational_efficiency”);
- Visualize Results
- Distribute the computational and network performances of parameter metrics for envision the MATLAB or Excel.
- Use to follow the packet flow NetAnim:
AnimationInterface anim(“computational_efficiency.xml”);
- Experiment with Parameters
- Validate the various packet sizes and congestion intervals.
- Different node has density or network topology complexity.
- It replicates the computationally intensive procedures for sample encryption, decoding to analyze their impact.
- Run the Simulation
Process for the replication of outcomes and analyze:
Simulator::Run();
Simulator::Destroy();
Network Computational Efficiency had implemented and executed successfully in ns3 simulation tool are used to achieve network performance. Also, we provide further information related to Network Computational Efficiency functionalities.