How to Begin Implement an Artificial Intelligence Networks in NS3

To execute the Artificial Intelligence Networks using NS3 environment, we will want to replicate a network, which integrates the AI-driven modules like traffic management, resource allocation, or anomaly detection. Since NS3 doesn’t directly offer AI components, we need to combine AI mechanisms via custom models or external tools.

We can follow these steps on how to start and execute the AI Networks using NS3:

Steps to Begin Implement an Artifical Intelligence Networks in NS3

  1. Understand AI Networks
  • Key Characteristics:
    • Networks, which utilise the AI models for improving the performance.
    • AI is used for scheduling, routing, anomaly detection, or adaptive network behavior.
  • Simulation Goals:
    • Measure the effect of AI mechanisms on network performance.
    • Replicate scenarios such as traffic prediction, resource optimization, or fault detection.
  1. Set Up ns3 Environment
  1. Install ns3:

git clone https://gitlab.com/nsnam/ns-3-dev.git

cd ns-3-dev

./build.py

  1. Confirm the installation:

./ns3 run hello-simulator

  1. Plan the Network Architecture
  • Components:
    • Nodes: Denote the devices within the network.
    • Links: Connections among the nodes.
    • AI Controller: A centralized or distributed system in which AI mechanisms are utilized.
  • Example Scenarios:
    • AI-driven intrusion detection.
    • Adaptive resource allocation in 5G or IoT networks.
    • AI-based traffic control.
  1. Incorporate AI Algorithms
  • Python Integration:
    • Add AI models which are improved in frameworks such as TensorFlow or PyTorch to leverage Python bindings (ns3-pybind).
    • AI mechanisms can be executed the network parameters and also offer decisions.
  • Custom C++ Models:
    • Directly execute the AI logic in C++ within ns3.
    • Sample contains reinforcement learning agents or decision trees.
  1. Write the Simulation Script
  2. Include Necessary Headers

#include “ns3/core-module.h”

#include “ns3/network-module.h”

#include “ns3/internet-module.h”

#include “ns3/point-to-point-module.h”

#include “ns3/applications-module.h”

  1. Define Nodes

ns3::NodeContainer nodes;

nodes.Create(10); // 10 nodes in the network

  1. Set Up Links

ns3::PointToPointHelper p2p;

p2p.SetDeviceAttribute(“DataRate”, ns3::StringValue(“1Gbps”));

p2p.SetChannelAttribute(“Delay”, ns3::StringValue(“2ms”));

ns3::NetDeviceContainer devices;

for (uint32_t i = 0; i < nodes.GetN() – 1; ++i) {

devices.Add(p2p.Install(nodes.Get(i), nodes.Get(i + 1)));

}

  1. Install Internet Stack

ns3::InternetStackHelper internet;

internet.Install(nodes);

ns3::Ipv4AddressHelper address;

address.SetBase(“10.1.1.0”, “255.255.255.0”);

ns3::Ipv4InterfaceContainer interfaces = address.Assign(devices);

  1. Add AI-Based Decision Logic
  1. Example AI Integration (C++ Placeholder):
    • AI logic can be executed by custom application or protocol.

class AINetworkController {

public:

void OptimizeTraffic() {

// AI logic to analyze and optimize traffic flow

std::cout << “AI Controller optimizing traffic” << std::endl;

}

};

  1. Trigger AI Logic During Simulation:

AINetworkController aiController;

ns3::Simulator::Schedule(ns3::Seconds(5.0), &AINetworkController::OptimizeTraffic, &aiController);

  1. Install Applications

// Server

ns3::UdpEchoServerHelper echoServer(9);

ns3::ApplicationContainer serverApps = echoServer.Install(nodes.Get(0));

serverApps.Start(ns3::Seconds(1.0));

serverApps.Stop(ns3::Seconds(20.0));

// Clients

for (uint32_t i = 1; i < nodes.GetN(); ++i) {

ns3::UdpEchoClientHelper echoClient(interfaces.GetAddress(0), 9);

echoClient.SetAttribute(“MaxPackets”, ns3::UintegerValue(10));

echoClient.SetAttribute(“Interval”, ns3::TimeValue(ns3::Seconds(2.0)));

echoClient.SetAttribute(“PacketSize”, ns3::UintegerValue(1024));

ns3::ApplicationContainer clientApps = echoClient.Install(nodes.Get(i));

clientApps.Start(ns3::Seconds(2.0));

clientApps.Stop(ns3::Seconds(20.0));

}

  1. Run the Simulation

ns3::Simulator::Run();

ns3::Simulator::Destroy();

  1. Python-Based AI Integration
  1. We can install Python bindings for ns3:

./waf configure –enable-python-bindings

  1. Create AI logic within Python:
    • Make an AI model with the support of TensorFlow, PyTorch, or scikit-learn.
    • For decision-making, need to pass ns3 parameters to Python.
  2. Example:

def ai_traffic_optimization(metrics):

# Placeholder for AI model

print(“Optimizing traffic based on”, metrics)

  1. Request Python AI logic from ns3 to leverage bindings or subprocess.
  1. Analyze and Visualize Results
  • Metrics:
    • Estimate the performance parameters such as throughput, latency, and packet delivery ratio.
    • Examine the effect of AI decisions.
  • Tracing and Visualization:

ns3::AsciiTraceHelper ascii;

p2p.EnableAsciiAll(ascii.CreateFileStream(“ai-network.tr”));

p2p.EnablePcapAll(“ai-network”);

  • For visualization, we can utilise the tools like NetAnim:

./waf –run “ai-network –vis”

  1. Iterate and Enhance
  • AI Algorithms:
    • Execute the reinforcement learning such as Q-learning, DQN.
    • For traffic forecasting, we will utilize predictive models.
  • Advanced Features:
    • Add AI for routing or QoS management.
    • Combine failure detection and retrieval approaches.
  • Scalability:
    • Experiment with larger networks and more advanced scenarios for scalability.

NS3 environment allowed us to carry out and implement the Artificial Intelligence Networks through the above execution steps with examples. We’re ready to offer more information upon request.