How to Begin Implement a Intelligent Agent WSN in NS3
To stimulate the Intelligent Agent-based Wireless Sensor Network (WSN) project using NS3 tool includes the incorporate a decision-making logic or AI-driven agents for enhance the functionality of WSNs. This agent can improve the challenges like as energy efficiency, routing, data aggregation, or event detection
Below is a step-by-step guide to get started:
Steps to Begin Implementing a Intelligent Agent WSN projects Using NS3
- Understand Intelligent Agent WSN Concepts
- Wireless Sensor Network (WSN):
- Network of sensor nodes are gathering and transmitting the data.
- Key features: The Intelligent features are involves the limited energy, self-organization, and distributed operation.
- Intelligent Agents:
- Autonomous entities for capable the creating of decisions according to the predefined rules or AI models.
- Include the challenges for adaptive routing, energy management, and anomaly detection.
- Use Cases:
- It includes the some use cases they are smart agriculture, environmental monitoring, industrial IoT, and surveillance.
- Set up NS3 Environment
- Install NS3.
- Familiarize the key NS3 components:
- Internet Module: It offers the TCP/IP functionality.
- Applications Module: Aimed at custom the module for congestion generation.
- Energy Module: Intended for replicating the energy constraints in WSN nodes.
- Mobility Module: Designed for dynamic node actions such as if applicable.
- Define Project Objectives
- Examples:
- Adaptive routing according to the energy or network environments.
- Intelligent agents are using the data aggregation and anomaly.
- Energy-efficient has communication by AI-driven scheduling.
- Design the Intelligent WSN Topology
- Sensor Nodes:
- Signify the devices which sense for data transmit.
- Sink Node:
- Central node are gathered the data from sensor nodes.
- Agent Nodes:
- Choose the nodes for decision-making and enhance the deploy agent.
- Basic Simulation Setup
Here’s a sample tool NS3 replication by sensor nodes for the intelligent sink node:
#include “ns3/core-module.h”
#include “ns3/network-module.h”
#include “ns3/internet-module.h”
#include “ns3/mobility-module.h”
#include “ns3/energy-module.h”
#include “ns3/applications-module.h”
using namespace ns3;
int main(int argc, char *argv[]) {
CommandLine cmd;
cmd.Parse(argc, argv);
// Create sensor nodes
NodeContainer sensorNodes;
sensorNodes.Create(10); // 10 sensor nodes
NodeContainer sinkNode;
sinkNode.Create(1); // 1 sink node
// Configure mobility for sensor nodes
MobilityHelper mobility;
mobility.SetPositionAllocator(“ns3::RandomRectanglePositionAllocator”,
“X”, StringValue(“ns3::UniformRandomVariable[Min=0.0|Max=100.0]”),
“Y”, StringValue(“ns3::UniformRandomVariable[Min=0.0|Max=100.0]”));
mobility.SetMobilityModel(“ns3::ConstantPositionMobilityModel”);
mobility.Install(sensorNodes);
mobility.SetMobilityModel(“ns3::ConstantPositionMobilityModel”);
mobility.Install(sinkNode);
// Install Internet stack
InternetStackHelper internet;
internet.Install(sensorNodes);
internet.Install(sinkNode);
// Assign IP addresses
Ipv4AddressHelper ipv4;
ipv4.SetBase(“10.1.1.0”, “255.255.255.0”);
ipv4.Assign(sensorNodes);
ipv4.Assign(sinkNode);
// Install Energy module
BasicEnergySourceHelper energySourceHelper;
energySourceHelper.Set(“BasicEnergySourceInitialEnergyJ”, DoubleValue(100.0));
EnergySourceContainer energySources = energySourceHelper.Install(sensorNodes);
WifiRadioEnergyModelHelper radioEnergyHelper;
DeviceEnergyModelContainer deviceEnergyModels = radioEnergyHelper.Install(sensorNodes, energySources);
// Simulate intelligent sink node processing
ApplicationContainer sinkApp;
PacketSinkHelper sink(“ns3::UdpSocketFactory”, InetSocketAddress(Ipv4Address::GetAny(), 8080));
sinkApp = sink.Install(sinkNode.Get(0));
sinkApp.Start(Seconds(1.0));
sinkApp.Stop(Seconds(10.0));
// Generate traffic from sensor nodes
OnOffHelper onOff(“ns3::UdpSocketFactory”, Address(InetSocketAddress(Ipv4Address(“10.1.1.1”), 8080)));
onOff.SetAttribute(“DataRate”, StringValue(“50kbps”));
onOff.SetAttribute(“PacketSize”, UintegerValue(1024));
ApplicationContainer sensorApps;
for (uint32_t i = 0; i < sensorNodes.GetN(); ++i) {
sensorApps.Add(onOff.Install(sensorNodes.Get(i)));
}
sensorApps.Start(Seconds(2.0));
sensorApps.Stop(Seconds(9.0));
Simulator::Run();
Simulator::Destroy();
return 0;
}
- Integrate Intelligent Agents
- Decision-Making Logic:
- Execute the agents for custom applications or scripts for control node behavior.
- Example Tasks:
- Adaptive routing: Select the routes according to their energy levels or network environments.
- Dynamic scheduling: Improve the energy savings for transmission intervals.
- Anomaly detection: Recognize the unusual data designs for the sink node.
- Enhance the Simulation
- Energy Efficiency:
- Use tool NS3’s for Energy Module we monitor the energy usage.
- It enhances the node behavior for decrease the energy consumption.
- Data Aggregation:
- Execute the intelligent of intermediate nodes for mixture the data.
- Machine Learning:
- Make use the AI models for ensure the real-time decision-making in finding the routing or anomaly.
- Performance Metrics
- Energy Consumption:
- Per node calculates the energy consumed.
- Packet Delivery Ratio:
- Examine the reliability for data delivery is the sink.
- Latency:
- The latency is estimate the duration for data is reaching the sink.
- Network Lifetime:
- Evaluate on how well long the network functions for before the nodes deplete their energy.
- Advanced Features
- Hierarchical WSN:
- Multi-level data aggregations are replicate the clustering.
- Mobile Nodes:
- Establish the mobility for deploy the dynamic sensor.
- Fault Tolerance:
- Apply the mechanisms for improving the node failures.
- IoT Integration:
- It replicates the IoT applications such as smart city monitoring.
- Visualization and Analysis
- It can use the tool like NetAnim for envision.
- Examine envision for replicate the metrices by Python or MATLAB for performance of parameter graphs and specific insights.
- Extensions
- Security:
- Secure data transmission are replicate the finding of malicious nodes.
- Hybrid Networks:
- It associates the WSNs through cellular or LoRa networks for extended the coverage.
- Distributed AI:
- Intended for decentralized the decision-making for nodes with deploy the AI agents.
In this given module, we had explicitly focussed the novel information on how to simulate the Intelligent Agent Wireless Sensor Network that were executed using ns3 tool that is used to make decision to enhance the network performance. Additional clarification will be offered the different manual.